INTIG- PULSE
Digital Inverter
MMA/TIG / Pulse TIG
Welding Machines

Operating manual
Thank you for selecting WARPP brand inverter welding machine. In order to keep the operator safe, away from unexpected accidents, and enjoy full benefits offered by our quality products during welding, please read the instruction in details prior to operation. Complying with procedures defined in this manual is always appreciated.

INDEX

1. Usage & Features .. (3)
2. Safety Precautions ... (3)
3. Installation ... (5)
4. Principle in Brief ... (7)
5. Operating Instruction (8)
6. Repair & Maintenance (14)
7. Technical Data .. (16)
8. Appendix A: Ordinary failures, probable cause &
 countermeasures .. (17)
9. Structural Diagram ... (18)
10. Spare Part List ... (24)
IN TIG series pulse TIG welders include 315 A, and 400A types, can perform DC TIG, Pulse TIG, and DC MMA, used for mild steel, alloy steel, stainless steel, Copper, Silver, and Titanium welding. This series welder enjoy reasonable static characteristic and sound dynamic characteristic as well as comprehensive functions:

- **Soft switch Inverter, high efficiency and reliability, small size, light weight and portable**
- **Non-source power factor correcting technical, high PF(power factor)**
- **Multifunction, convenience, good adjustability**
- **Less spatter, less weld distortion, pretty weld formation.**
- **High success rate of arc-starting due to stronger pulse strike**
- **Pulse frequency, pulse ratio, pulse amplitude can be adjusted freely in wider range.**

Safety precautions

⚠️ **General safety precautions:**

- Please strictly comply with rules defined in this manual to avoid unexpected accidents
- How to connect to power supply, select working area and use pressure gas, please comply with proper rules
- Not allow non-operator for entering working area
- Welding machine installation, inspection, maintenance, operation should be completed by authorized person.
- Don’t use welding machine for unrelated purpose (Such as recharging, heating or pipe thawing)
- Must take safe precaution in case welder falling when it is put on the uneven ground
Avoid being electric shocked and burnt
- Never touch on the hot electrical units.
- Please instruct the authorized electrician to ground the welder case by using proper sized copper wire.
- Please instruct the authorized electrician to connect the welder to power supply by using proper- sized, well-insulated copper wire.
- When operating in the damp, space-limited area, must ensure well-insulated between body and work piece
- When operating at the high-rising location, must ensure safety by using safe net.
- Please power off the welder while no longer using.

Avoid breathing in hazardous welding fume or gas
- Please use specified ventilation to prevent being gas poisoned and asphyxiated
- Especially in the container where oxygen is depleted easily

Avoid being harmed by arc flash, hot spatter and slag
- Arc rays can injure your eyes and make your eyes feel uncomfortable.
- Hot spatter and slag can burn your skin.
- Please wear proper welding helmet, leather gloves, long- sleeved suit, cap, apron and boot before welding.

Preventing accidents from fire, explosion, container break
- Don’t put flammable material in the working area. Hot spatter and hot weld can easily start a fire.
- Cable must be connected the work piece firmly to ensure good conductivity in case causing fire by resistance heat.
- Don’t weld in the flammable gas or weld container which contains flammable material, otherwise it can cause explosion.
- Don’t weld encapsulated container, otherwise it can break.
- Ensuring fire extinguisher at hand in case a fire break out.
Avoid being hurt by moving parts

- Never let the finger, hair, and cloth near the rotary cooling fan and wire feeder rollers.
- When feeding wire, don’t let the bottom of gun near your eyes, face and body, to prevent being harmed by wire.

Avoid gas bottle falling or gas regulator breaking

- Gas bottle must be firmly fixed on the ground, else if injury will exerts on.
- Never place bottle under high temperature or sun light.
- Never let your face near gas outlet while turning on the gas valve to prevent from being hurt by pressure gas.
- Customer should use gas regulator provided by our company, and comply with the proper instruction.

Avoiding being hurt by welders while in transport

- When moving the welding machine by fork-lift truck or crane, nobody can be allowed for standing downright the route of the moving welder, in case being hurt by the falling welder.
- The ropes or wires which used for hanging up the welding machine must be strong enough to withstand corresponding tension strength. The rope or wire inclination hanging on the tackle must be no more than 30°.

Installation

1. **Installing situation:**
 (1) Must place welding machine in the room where is no straight sunlight, no rain, less dust, low humidity, and temperature range of \(-10 \,^\circ C\) to \(+40 \,^\circ C\).
 (2) The gradient of ground must be no more than 15°.
 (3) Ensure no wind at the welding position, or use screen to block the wind.
(4) The distance between welder and wall must be more than 20cm, between welders more than 10cm to ensure enough heat radiation.

(5) When using water cooled gun, must be care of not being frozen.

2 Requirement of input supply:

(1) Input volt must be standard sine wave, effective value 350 ~ 465V, frequency 50Hz/60Hz

(2) Unbalance degree of three phase volt must be no more than 5%

3 Power supply:

<table>
<thead>
<tr>
<th>Product type</th>
<th>IN TIG-315 P</th>
<th>IN TIG-400 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>3 phase AC380V</td>
<td></td>
</tr>
<tr>
<td>Min. capacity</td>
<td>Power network</td>
<td>13.8KVA</td>
</tr>
<tr>
<td>Input volt protection</td>
<td>Fuse</td>
<td>32 A</td>
</tr>
<tr>
<td></td>
<td>Circuit breaker</td>
<td>32 A</td>
</tr>
<tr>
<td>Cable size (cross-section)</td>
<td>Input side</td>
<td>4mm²</td>
</tr>
<tr>
<td></td>
<td>Output side</td>
<td>35mm²</td>
</tr>
<tr>
<td></td>
<td>Earth lead</td>
<td>4mm²</td>
</tr>
</tbody>
</table>

Table1: The size of fuse and breaker in the table are for reference only.

4 Installation:

The input power of this series welding machines is three phase AC 350 ~ 465 V. Operator must use the properly disconnected switchboard or switch box(not outfitted by our company) which is equipped air switch or breaker, and make sure to ground the machine safely and firmly.
4.1 For MMA welding:

(1) Connect welding cable to welding machine tightly.
(2) Reset the circuit beaker on the rear panel of the machine.
(3) Connect the input power cable to the disconnected switchboard, then power on.

4.2 For TIG welding:

(1) Well-connect welding cable with welder (+), and well-connect TIG torch with welder (-).
(2) Well-connect gas hose and gas source; well-connect water pipe and water source when using water cooled torch.
(3) Close air switch of the welder.
(4) Connect 3 phase cable with the switchboard and power it on.

Principle in Brief

3~380V/50Hz

Fig 2 Block diagram of principle

Fig 3a TIG Output Characteristic Fig 3b SMAW output characteristic
This series welding machines apply IGBT soft switch inverter technology. 3-phase input volt are rectified by rectifier, inverted into HF AC, reduced by HF transformer, rectified and filtered by HF rectifier, then output DC power suitable for welding. After this process, the welder’s dynamically responsive speed has been greatly increased, so the welder size and weight are reduced noticeably result in energy saving. Power source enjoy sound anti-fluctuating ability and high-quality performance during external context changes (As to fluctuation in input power supply and extended welding cables). Easy to arc start, stable arc length, pretty weld formation and capability of continuous regulation the current of welding, arc-starting and arc force as well as time of down-slope add significant values to customers. They have down-slope, pre-gas flow and post-gas flow function due to reasonable logic circuit design.

Operating Instruction

1 Function introduction

1.1 Front panel illustration and parts number reference

![Fig.4: Front panel](image-url)
1.2 Rear panel illustration and parts number reference

![Rear panel illustration]

Fig.5: Rear panel

1.3 Control panel

The machine’s control panel drawing for mode selection and parameters preset shows as figure (6). Control panel includes LED alphanumeric display, tuning knob, diode indicator lamps.

![Control panel illustration]

Fig.6: Control panel

1.3.1 Mode selection and parameters preset

```
[TIG / MMA] shift

[TIG] - [SMAW]
```

“TIG / MMA” shift

```
[CC] - [PULSE]
```

On “TIG”: Switch between “Constant” DC TIG and “Pulse” DC TIG
On “MMA”: Switch between “Amp” Display and “Volt” display
Switch between “2-Step” (Non-Autolock) and “4-Step” (Autolock) on TIG
“2-step” refers to start welding while push torch trigger, stop welding while releasing it.
“4-step” refers to starting-arc current while firstly pushing torch trigger, then current slopes up to where can welding normally while releasing it. When welding finished, current slopes down to where stops arc and stands while pushing it again, then stops output current while releasing it.

Glossary:
1D Pre-gas flow: time of gas flow before welding
2D Arc-starting: current of start arc
3D Up-slope: time of welding current slopes up
4D Arc-striking: current of start arc on MMA
5D Constant current: welding current in constant output state
6D Arc-force: current of arc-force on MMA
7D Peak value: Peak current of pulse output
8) Pulse ratio: time ratio between length of peak value current and length of whole single pulse, can be used for controlling penetration in all-position or thin sheet welding.

9) Pulse frequency: frequency of pulse output.

10) Base current: current of arc-stand in pulse output.

11) Down-slope: time of welding current slopes down

12) Crater filling: current of crater filling

13) Post-gas flow: time of gas flow after ending welding

Parameters selection knob: used to select parameters illustrated previously. Select consequently from left to right by tuning clockwise, select reversely by tuning counter-clockwise.

Parameter regulation knob: Used to adjust value of the selected parameters. Increase by tuning clockwise, reduce by tuning counter-clockwise. Press the knob and tune clockwise or counter-clockwise for quick preset.

“Water cooled/Air cooled” shift: Default set-up is “Water-cooled”. If “Air-cooled” is selected, then press on “Parameter Selection” and “Parameter regulation” knobs simultaneously for two seconds to eliminate “Water insufficient” protection in order to normal welding. Redo the same procedure to come back to the previous mode.

Welder can automatically save settled parameters for next time using while turning off the machine.

1.3.2 “Protection” indicator lamp: lights on yellow and stops welding automatically while in overheat or water insufficient, but will not light on while in normal welding.

1.3.3 Protection code:

Display 804: overheat protection

Display 805: On TIG welding, push welding torch trigger for too long time in open load or trigger damaged.
Display 806: water insufficient protection

1.3.4 Power on/off lamp: display red when power on

2. Procedures of TIG welding

2.1”2-step”

2.2”4-step”

3. Welding parameters
3.1 TIG welding parameters

<table>
<thead>
<tr>
<th>Sheet thickness (mm)</th>
<th>Tungsten electrode diameter (mm)</th>
<th>wire diameter (mm)</th>
<th>Welding current (A)</th>
<th>Gas flow rate (L/min)</th>
<th>Clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.0-1.6</td>
<td>0-1.0</td>
<td>5-30</td>
<td>4-5</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0-1.6</td>
<td>0-1.6</td>
<td>10-30</td>
<td>5-7</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0-1.6</td>
<td>0-1.6</td>
<td>50-70</td>
<td>6-9</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>1.6-2.4</td>
<td>1.6-2.4</td>
<td>70-90</td>
<td>6-9</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>1.6-2.4</td>
<td>1.6-2.4</td>
<td>90-120</td>
<td>7-10</td>
<td>1-2</td>
</tr>
<tr>
<td>4.0</td>
<td>2.4</td>
<td>1.6-2.4</td>
<td>120-150</td>
<td>10-15</td>
<td>2-3</td>
</tr>
<tr>
<td>5.0</td>
<td>2.4-3.2</td>
<td>2.4-3.2</td>
<td>120-180</td>
<td>10-15</td>
<td>2-3</td>
</tr>
<tr>
<td>6.0</td>
<td>2.4-3.2</td>
<td>2.4-3.2</td>
<td>150-200</td>
<td>10-15</td>
<td>3-4</td>
</tr>
<tr>
<td>8.0</td>
<td>3.2-4.0</td>
<td>3.2-4.0</td>
<td>160-220</td>
<td>12-18</td>
<td>4-5</td>
</tr>
<tr>
<td>12.0</td>
<td>3.2-4.0</td>
<td>3.2-4.0</td>
<td>180-300</td>
<td>12-18</td>
<td>6-8</td>
</tr>
</tbody>
</table>

3.2 MMA welding parameters

<table>
<thead>
<tr>
<th>Work piece thickness (mm)</th>
<th>≤1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>12</th>
<th>≥13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding electrode diameter (mm)</td>
<td>1.5</td>
<td>2</td>
<td>3.2</td>
<td>3.2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Welding current (A)</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>90</td>
<td>120</td>
<td>90</td>
<td>130</td>
<td>160</td>
</tr>
</tbody>
</table>
Warning: Should not open up case freely, the max volt inside machine will be 600V. Must take safe precautions to prevent from being electric shocked while in maintenance.

1. Apparently misunderstand failures
 Normal phenomenon occurs in welding
 (1) Welder doesn’t work while in pretty low input volt.
 (2) When welder has worked for a long time in high temperature or in high welding current context, the thermal-sensitive circuit breaker will tripped to stop welder working, protection lamp will light on and LED will show “804” protection code. Welder will automatically reinstate after merely running up for several minutes in open load (not necessarily shut down welder).
 (3) When welder has worked for a long time in high temperature or in high welding current context, the circuit breaker on the rear panel will tripped to power off. When this situation occurs, please switch off the disconnected switchboard. Then halt the welder lasting at least five minutes to restart. When restarting the welder, please reset the circuit breaker firstly, then turn on the disconnect switchboard or switch box to power on welder, finally use for welding after running up for several minutes in open load.

2. Attention
 1. The input volt range must be between 340-420V, and no phase missing.
 2. Check if the ground leads are connected correctly and firmly.
 3. Must wires welding cable to terminal plug socket firmly, otherwise will burn out the terminal which lead to welding process instability.
 4. Power off as soon as finished welding
 5. When use in outdoor, make sure welder be shielded from rains or snows, but don’t block air circulation.
3. Troubleshooting

3.1 Routine checking procedure prior to maintenance
1. Check if the input volt has the phase to be lost, and range are between 340-420V.
2. Check if the power input cables are correctly and firmly.
3. Check if the ground leads are connected correctly and firmly.
4. Check if the cables are connected correctly and firmly.

3.2 Regular troubleshooting & countermeasure. Refer to appendix A.

4. Periodical check and maintenance

1. Must removes dust from power resource with pressure air by authorized maintainer each year while checking if the jointers are loose. Must check frequently if quick plug or terminal sockets are loosely connected, knobs are loose, at least per month.
2. Must check if knobs are loose connection in time.
Technical Data

1. Main technical parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>IN TIG-315 P</th>
<th>IN TIG-400 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated output volt</td>
<td>3 phase 350 ~ 465 V/50Hz</td>
<td></td>
</tr>
<tr>
<td>Rated input volt</td>
<td>13.8KVA</td>
<td>18.4KVA</td>
</tr>
<tr>
<td>Rated input current</td>
<td>21A</td>
<td>28A</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>35%</td>
<td>60%</td>
</tr>
<tr>
<td>Pre-flow gas</td>
<td>0.1-15s</td>
<td></td>
</tr>
<tr>
<td>Striking arc current</td>
<td>10 160A</td>
<td></td>
</tr>
<tr>
<td>Slope up time</td>
<td>0.1-10s</td>
<td></td>
</tr>
<tr>
<td>Arc-starting current</td>
<td>20-160A</td>
<td></td>
</tr>
<tr>
<td>Constant current</td>
<td>5-315A</td>
<td>5-400A</td>
</tr>
<tr>
<td>Arc Force current</td>
<td>10-100A</td>
<td>10-200A</td>
</tr>
<tr>
<td>Peak current</td>
<td>5-315A</td>
<td>5-400A</td>
</tr>
<tr>
<td>Pulse percentage</td>
<td>1%-100%</td>
<td></td>
</tr>
<tr>
<td>Pulse frequency</td>
<td>0.2-50Hz</td>
<td></td>
</tr>
<tr>
<td>Base current</td>
<td>5-315A</td>
<td>5-400A</td>
</tr>
<tr>
<td>Slope down time</td>
<td>0.1-15s</td>
<td></td>
</tr>
<tr>
<td>Stop-arc current</td>
<td>5-315A</td>
<td>5-400A</td>
</tr>
<tr>
<td>Post flow time</td>
<td>0.1-15s</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Power factor</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>30kg</td>
<td>35kg</td>
</tr>
<tr>
<td>Main transformer insulation grade</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Output reactor insulation grade</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
MAIN CIRCUIT DIAGRAM

J4(3) J4(1) E4 G4 E1 G1 E2 G2

Main Board

Driving Board

E4 E3 E2 E1

G4 G3 G2 G1

K1 L1

RED P3(1) P3(2) P1(1) P1(3) P1(2)

VC+ VC-

Displayer Board

J9

J1(1) J1(2)

J8(B)

J5(3) J5(4)

Panasonic 6-Pin Plug

J5(2) J5(1)

J6(5)

HF Box

J8

Function Select

Adjust coder

G3 E3

+ WSM -31 5 2 38 0V T4

1 3

2 4

1 2

1 2

J15(1) J3(3) J3(1) J5(8) J5(7)

J15(3) J10(1) J10(2)

Water tap (1) Water tap (2)

J10(2) J10(1)

J10(2) J10(1)

J10(2) J10(1)

J10(4) J10(3)

9 10 11 19V

1 38V

Preset Coder

J6 (6)

J6 (1) J6 (3)

V- V+

J5(5) J5(6)

9 10

19V 19V

7 8

7V 17

10V 10V
Appendix A: Ordinary failures, probable cause & countermeasures

<table>
<thead>
<tr>
<th>№</th>
<th>Trouble</th>
<th>Probable cause</th>
<th>Remedies</th>
</tr>
</thead>
</table>
| 1 | Indicator lamp does not light on and doesn’t work when machine switches on. | ✱ Phase missing
✱ Fuse size 2A breaks
✩ Input cable break down | ✱ inspect power source
✱ Inspect fan, power source transformer and control board are in good condition or not
✩ Inspect cable |
| 2 | Air switch trips automatically while welder working on without big welding current for long time | ✱ The following components may probably damaged: IGBT module, 3 phase rectified module, output diode module, other components
✱ Short circuited | Inspection and replacement |
| 3 | Welding current is not stable. | ✱ Phase missing
✱ Main control board is damaged. | ✱ Inspect power source
✱ Inspection and replacement |
| 4 | Welding current is not adjustable. | ✱ Conductive wires broken.
✱ Main control board is damaged.
✩ Coder damaged | Inspection and replacement |
| 5 | Protection code displays 804 | ✱ Welding current is too big
✱ Context temperature is too high.
✩ Thermal relay is damaged | ✱ Needs zero load cooling
✱ Replace temperature relay |
| 6 | displays 805 protection code | ✱ torch is damaged
✱ torch trigger has been pushed for a long time in open load | Inspect the torch and replace it release the trigger |
Front Panel

Encoder for Parameter Selection (ENC01)

MCB (MCB001)

Output Connector EURO Type (OCN-EURO-S)

Encoder for Parameter Setting (ENC01)

2 Pin Connector Male (CON2PNM)
Rear Panel

Fan (FAN002)
Top View

- Drive Card (PCB-DRV-01U)
- Display PCB (PCB-DSP-TIGPLS-01)
- Control Transformer (CTRAX004)
- Main PCB (PCB-TIGPLS-315I)
Right View

Over Current Protection PCB (PCB33)

SNUBBER CARD (PCB-SNB-04)

AC Capacitor (CAP002)

IGBT (IGBT50R12)

HF PCB (PCB-HF-01)

Input Bridge Module (IBDG003)

HF Transformer (CTRA007)

Water Flow Switch (WFS-50W)

DC Capacitor (CAP001)

Solonaid Valve (SV001)

MOV (MOV001)

Fan Capacitor (CAP005)
Left View

- Secondary Thrust Coil (S-THCL)
- Snubber PCB for Output FRM (PCB-SNB-OUT-01)
- Output Rectifier Module (FRM001)
- Current Sensor (CS001)
- Insulation Transformer (INSTRX001)
- Main Transformer (MTRAX006-P)
- Isolation PCB (PCB-ISO-02)
- Output Choke (CHK001)
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>INTIG-315 PULSE</th>
<th>SPEC.</th>
<th>INTIG-400 PULSE</th>
<th>SPEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN PCB</td>
<td>PCB-TIGPLS-315I</td>
<td></td>
<td>PCB-TIGPLS-400I</td>
<td></td>
</tr>
<tr>
<td>DRIVE CARD</td>
<td>PCB-DRV-01U</td>
<td></td>
<td>PCB-DRV-01U</td>
<td></td>
</tr>
<tr>
<td>DISPLAY PCB</td>
<td>PCB-DSP-TIGPLS-01</td>
<td></td>
<td>PCB-DSP-TIGPLS-01</td>
<td></td>
</tr>
<tr>
<td>IGBT</td>
<td>IGBT50R12</td>
<td>NA</td>
<td>IGBT50R12</td>
<td>NA</td>
</tr>
<tr>
<td>SNUBBER CARD</td>
<td>PCB-SNB-04</td>
<td></td>
<td>PCB-SNB-04</td>
<td></td>
</tr>
<tr>
<td>IGBT WITH SNUBBER CARD</td>
<td>IGBT50R12SNB</td>
<td>50R12SNB (50 Amps 1200V)</td>
<td>IGBT50R12SNB</td>
<td>50R12SNB (50 Amps 1200V)</td>
</tr>
<tr>
<td>INPUT BRIDGE MODULE</td>
<td>IBDG003</td>
<td>100 Amps 1200V</td>
<td>IBDG003</td>
<td>100 Amps 1200V</td>
</tr>
<tr>
<td>OUTPUT RECTIFIER MODULE</td>
<td>FRM001</td>
<td>200 Amps 400V</td>
<td>FRM001</td>
<td>200 Amps 400V</td>
</tr>
<tr>
<td>FAN</td>
<td>FAN002</td>
<td></td>
<td>FAN002</td>
<td></td>
</tr>
<tr>
<td>DC CAPACITOR</td>
<td>CAP001</td>
<td>20UF 1400V</td>
<td>CAP001</td>
<td>20UF 1400V</td>
</tr>
<tr>
<td>AC CAPACITOR</td>
<td>CAP002</td>
<td>4 UF 500 V</td>
<td>CAP003</td>
<td>5UF 500V</td>
</tr>
<tr>
<td>MCB</td>
<td>MCB001</td>
<td>40 Amps</td>
<td>MCB002</td>
<td>40 Amps</td>
</tr>
<tr>
<td>INPUT SURGE SUPPRESSOR</td>
<td>ISS001</td>
<td></td>
<td>ISS001</td>
<td></td>
</tr>
<tr>
<td>SNUBBER CAPACITOR</td>
<td>SCAP001</td>
<td>0.47UF 1200V</td>
<td>SCAP001</td>
<td>0.47UF 1200V</td>
</tr>
<tr>
<td>CONTROL TRANSFORMER</td>
<td>CTRAX004</td>
<td></td>
<td>CTRAX004</td>
<td></td>
</tr>
<tr>
<td>OUTPUT CHOKE</td>
<td>CHK001</td>
<td></td>
<td>CHK001</td>
<td></td>
</tr>
<tr>
<td>HF PCB</td>
<td>PCB-HF-01</td>
<td></td>
<td>PCB-HF-01</td>
<td></td>
</tr>
<tr>
<td>HF PCB CAPACITOR</td>
<td>PCB22.01</td>
<td></td>
<td>PCB22.01</td>
<td></td>
</tr>
<tr>
<td>SOLONAID VALVE</td>
<td>SV001</td>
<td></td>
<td>SV001</td>
<td></td>
</tr>
<tr>
<td>INSULATION TRANSFORMER</td>
<td>INSTRX001</td>
<td></td>
<td>INSTRX001</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>MOV001</td>
<td></td>
<td>MOV001</td>
<td></td>
</tr>
<tr>
<td>ISOLATION PCB</td>
<td>PCB-ISO-02</td>
<td></td>
<td>PCB-ISO-02</td>
<td></td>
</tr>
<tr>
<td>SNUBBER PCB FOR OUTPUT FRM</td>
<td>PCB-SNB-OUT-01</td>
<td></td>
<td>PCB-SNB-OUT-01</td>
<td></td>
</tr>
<tr>
<td>ENCODER FOR PARAMETER SELECTION AND SETTING</td>
<td>ENC01</td>
<td></td>
<td>ENC01</td>
<td></td>
</tr>
<tr>
<td>KNOB FOR THE POT (ENC)</td>
<td>KNOB001</td>
<td></td>
<td>KNOB001</td>
<td></td>
</tr>
<tr>
<td>OVERCURRENT PROTECTION PCB</td>
<td>PCB33</td>
<td></td>
<td>PCB16</td>
<td></td>
</tr>
<tr>
<td>MAIN TRANSFORMER</td>
<td>MTRX006-P</td>
<td></td>
<td>MTRX002</td>
<td></td>
</tr>
<tr>
<td>FAN CAPACITOR</td>
<td>CAP05</td>
<td></td>
<td>CAP05</td>
<td></td>
</tr>
<tr>
<td>OUT PUT CONNECTOR MACHINE SIDE</td>
<td>FST-PLG-F-01</td>
<td></td>
<td>FST-PLG-F-01</td>
<td></td>
</tr>
<tr>
<td>OUT PUT CONNECTOR CABLE SIDE</td>
<td>FST-PLG-M-01</td>
<td></td>
<td>FST-PLG-M-01</td>
<td></td>
</tr>
<tr>
<td>2 PIN CONNECTOR MALE</td>
<td>CON2PNM</td>
<td></td>
<td>CON2PNM</td>
<td></td>
</tr>
<tr>
<td>2 PIN CONNECTOR FEMALE CABLE SIDE</td>
<td>CON-2-CM-F-01</td>
<td></td>
<td>CON-2-CM-F-01</td>
<td></td>
</tr>
<tr>
<td>OUTPUT CONNECTOR EURO TYPE WITH STRIP</td>
<td>OCN-EURO-S</td>
<td></td>
<td>OCN-EURO-S</td>
<td></td>
</tr>
<tr>
<td>CURRENT SENSOR</td>
<td>CS001</td>
<td></td>
<td>CS001</td>
<td></td>
</tr>
<tr>
<td>SECONDARY THRUST COIL</td>
<td>S-THCL-315</td>
<td></td>
<td>S-THCL-400</td>
<td></td>
</tr>
<tr>
<td>LED RED</td>
<td>LEDR01</td>
<td></td>
<td>LEDR01</td>
<td></td>
</tr>
<tr>
<td>WATER FLOW SWITCH</td>
<td>WFS-50W</td>
<td></td>
<td>WFS-50W</td>
<td></td>
</tr>
<tr>
<td>LED YELLOW</td>
<td>LEDY01</td>
<td></td>
<td>LEDY01</td>
<td></td>
</tr>
</tbody>
</table>